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ABSTRACT

The maihematical basis for the forthcoming Angular Liquid Bridge investigation on buard Mi
is described. ‘The anticipated liquic behavior used in the apparatus design is illustrated.

INTRODUCTION

We describe here recent mathematical results that form the basis of our forthcoming space
experiment, developed jointly with Mark Weislogel of NASA Lewis Research Center, which is
scheduled for the Giovebax on the Mir 23 / NASA 4 Mission iu December, 196. Our wathematical
work is based on the classical Young-Laplace-Gauss formulation for an cquilibrium free surface
of liquid partly filling a container or otherwise in contact with solid support surfaces. In this
sormulation. when gravity is absent or can be neglected, which is the situation: we consider here,
the mechanical energy £ of the system is given by

E =0(S~ S cosq). 1

The interfacial liquic-vapor surface tensior parameter o and the relative adhesion coeflivient cos-y
of the Kquid with the container walls are assumed to depend only on the materal properties, which
are taken here Lo be homogeneons {the same value of cosy on all parts of the container, as will be
the case for the experiment). S and S° are, respectively, the areas of the liquid-vapo fiéen surtace
and of the solic-liquid interface.

Equilibrium configura s are those providing stationary values of the energy functional £
subject to the condition of < liquid volume {1}. ‘Ihe equilibrium liquid-vapos frec surfaces
sc determained are surfaces ot tant mean curvature meseting the bounding walls with contact
angle 7. We consider here valuc. of the contact angie 0 < v <« 7. Of particular interest in
our mathematical studles are situatious in which smal! changes in contact angle or geometry can
result in large changes, possibly discontinuous, of the equilibrium fluid contiguration. lmpetus tor
the preseat experiment arises largely from receut doctorad disrertations of two students associaled
with our study, John McCuan {2} and Lianmin Zkou {3}, from whose contrasting resuits striking
ferences can he drawn.




ANGULAR LIQUID BRIDGE

In his work, McCuan found conditions under which an equilibrium tubular bridge in a wedge
domain (Fig. 1) would be possible in zero gravity, and he gave the shape such a bridge might tale.
This work is a completely rigorous mathematical study, based on the classical formulation.

Consider a wedge domain with opening angle 2a, 0 < 2a < 7. The results McCuan proved
contein the following (if the contact angles on the two sides of the wedge are different, the following
results hold if ¥ on the left of the inequalities is their average):

If+v> x/2+ a, a bridge in the shape of & portion of a sphcre making contact angle 4 with the
wells erists.

If 4 < = /2 4+ &, no physically realizeble bridge is possible.

{t has mot yet been proved whether or not other shape bridges may be possible when
4 > 1/2 4 o, or whether the spherical bridges are stable (provide a local minirwum for the energyj.
However, our numerical results and those of H. Mittelmann (private communication), obtained us-
ing the Surface Evolver software package {4], indicate that the spherical bridges are stable, at least
for the representative cases we considered. Also, no bridge shapes other than the sphere have been
found numerically. Note that McCuan’s results imply that a bridge is possible only for v > 7/2.
A spherical liquid bridge is skown in Fig. 4 for the case a = 25°, ¥ = 130°.

BRIDGE BETWEEN PARALLEL PLATES --DISCONTINUOUS BEHAVIOR

The above results for liquid bridges in a wedge cowpare in a remarkable way with ihose for
bridges between parallc! plates (Fig. 2). This latter problem was studied initially from a rigorous
mathematical point of view by Athanassenas {5} and by Vogel [}, and later using a more physical
approach by Langbein {7}. {Note that in these papers, as is the case in {3} and here, the boundary
conditions at the plates are prescribed contact angle, which arises from the variational condition for
{1). For fixed end conditions, as considered in much of the materials science literature, the behavior
of solutions is different.} In her doctoral dissertation, Zhou obtained definitive mathernatical resuits
that imply the following:

For any value of the contact engle % ernd for any hquid volume V greater thern or equsl to a
critical value Vo(7y), a unigue stable liguid oridge exists between two parallel plates of given separa-
tion.

It is known that any equilibrium bridge must be rotationally symmetric {6}, {8] and that its
See surface is a Delaunay surface {3}, [9], {10]. For v > /2 and for 3 specific liqud volume V,(h}
depending on the piate spacing h, the free surface is simply & portion of the surface of & spliere.
For other values of the volume the Delaunay surface is different from a sphere.

"hese results, when combined with the results for the wedge, imply that a bridge between
parallel plates may change its configuration and position markedly when one of the plates is tilted,
even by a small amount, or it even may cesse Lo exist as » bridge allogether; u liquid bridge ielween
perallel plates car. beheve discontinuously with respect to tilting of the plates. in stability studies
such as {3}, {6}, and [7], limited to the paralic! plate geometry, this hquid bridge instability with
respect to Dlate tilt is not observed.

As a specific example, consider a spherical bridge betwven parallel plates of spacing h. Suppese
the top piate is tilted clockwise by an angle 2o < 2v — = about a pivot hine in the plate that s a
distance Lhtana from the symmetry axis of the bridge. Then the liquic remains an equilibrium
bridge for the new tilted plate configuration, without any changs in the radius of the sphere or
ir. the bridge's position on the lower piate. However, a bridge with voiluwe V' different from V,
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(and with the same contact angle) would change both position and shape in aitering to a spherical
bridge after the tilt, moving to the right for V < V; and to the left for V > V,. This is one of the
phencmena we wish to study in our forthcoming experiment.

OTHER CONFIGURATIONS

When the conditions for a bridge in a wedge arc not satisfied, liquid may assume a position
as a biob in the shape of a portion of a sphere in contact with the edge, see Fig. 3. The condition
for such 2 configuration to be possible is that |y — 7/2] < a. (Recall we consider here only the
case 0 < 2a < %.) Although the edge blobs have not been studied with the same mathematical
completeness as have the bridges, they have been noted in {11} and {12} and for some examples
studied numerically. Our numerical computations indicate that, as for the angular bridges, the
spherical edge blobs are stable, and 2s yet we have found no other edge blob shapes numerically.

In our earlier work, which considers fluid behavior in the neighborhood of the vertex of 2
wedge, we have shown that if o+ < 7/2, then fluid cannot remain as a blob in the edge but must
spread arbitrarily far along the edge {i], [10]. See also {12] and the references there for a discussion
of stability of liquid columns in a wedge.

ANTICIPATED EXPERIMENT BEHAVIOR

The liquid behavior one might expect in a physical experiwent in space, based on the Laplace-
Young-Gauss formulation, is summarized in Fig 4. This figure illustrates the information discussed
above, based in part on mathematically rigorous results and, where these are not available, on
computational evidence for particular cases. The numerical solutions depicted in Fig. 4 were ol»
tsined using the Surfacc Evolver software package. The computations were carried out with initial
approximations and transitions between configurations similas to those in which the experiment is
designed -0 proceed, thereby enhanciug appropriateness of the numerically based predictions on
uniqueness and stability.

The upper two rows of }ig. 4 depict the nonwetting case v > m/2: A liquid bridge between
paraliel plates is convex (part of a sphere for a specific fuid volume). Spherical tubular bridges
and edge blobs exist for tilted plates, for the range of values indicated. Edge spread ks not possible.
For fixed ¥ > 7/2, transition from tubular bridges to edge blobs occurs as o increases through the
value v = % /2.

For the wetling case 7 < %/2, a liquid bridge between parallel piates is concave. A tubular
bridge between tilted plates is not possible, but the (spherical) edge Llob and edge spreud ate
For fixed 4 < =/2, the transition from cdge blob to unbourded edge spread occurs as a decreases
through the value #/2 — 7. Computed edge blobs are shown (from diffcrent vicwing perspectives)
for the case @ = 25°, 4 = 100° in the second row and for a = 20°, 4 = 75° in the bottom row.

The planned experiment will explore the transition between the configurations for n nonwetting
and for a wetting fluid. As discussed above, when initially paraliel plates are tilted. the fluid is
predicted to behave discontinucusly in general, the exception being the special case of a spherical
bridge and a perticular pivot line. The other transitions, horizonkally acios the second amd fouath
rows of Fig. 4 as a changes value, are zradual, as can be demonstrated by the explicit spherical
solutions.




CONCLUDING REMARKS

We have described fluid behavior predicted mathematicaily and computationally for the forth-
coming Angular Liquid Bridge investigation on board the Mir 23 / NASA 4 Mission. The predic-
tions, which include discontinuous behavior, are based on the idealized classical Young-Laplace-
Gauss formulation. In the experiment there will be an opportunity to check the predictions ageinst
physical behavior and to observe the effects of hysteresis and otker phenomena not included in the
classical formulation.
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Figure 1. Tubular bridge in a wedge.

Figure 2. Bridge between parallel plates.
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Figure 3. Edge blob
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NONWETTING LIQUIDS (y>=x/2)

Bridge between parallet plates

Edge spread
not possible
Sphericai bridge Edge bicb
y-a>n/2 y-asn/2
WETTING LIQUIDS (y<n/2)
Bridge betwaen parallel plates
4
Wedge bndge
not possible
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Figure 4. Fluid configurations. Uppe: two rows: nonwetting liquids; lower two rows: weding, tiquids.




o~

sIrFECEr L] EANE ST DRLANDCS LAWRLNCE BRAXELEY NAT UNAL LAIDRATOIV

‘/400116),. AND FLECTRONIZ INFISRMAT ON DERPARTMEINT
(iaoer oy tan UNIVERS Ty OF SALFCHNA | BERKELLY, DAL 7FGRNA 34720




